Simplifying Circuits

A circuit is any closed loop between two or more points through which electrons may flow from a voltage or current source. Circuits range in complexity from one, basic component to a variety of components arranged in different ways. This handout will discuss the basics of circuits and the associated laws required to analyze and simplify them.

You can navigate to specific sections of this handout by clicking the links below.

Key Terms: pg. 1

Series and Parallel: pg. 2
Simplifying Circuits: pg. 3

Practice Problems: pg. 11

Key Terms

The following table defines key terms needed to work with circuits.

Basic Terms	Definition	SI Units	Formula
Resistance	The ratio of voltage (V) across a conductor to the current (I) in the conductor.	Ohms (Ω)	$\mathrm{R}=\mathrm{V} / \mathrm{I}$
Current	The amount of charge passing "through a particular region over a set amount of time.	Amperes (A)	$\mathrm{I}=\mathrm{V} / \mathrm{R}$
Voltage	A measure of potential difference/electric potential across a circuit.	Volts (V) $=\left(\frac{1 \text { Coulomb }}{\text { Second })}\right.$	

Series and Parallel

There are two basic configurations of resistors within circuits: series and parallel. In a series configuration, the resistors are connected in a single path so that the charge must travel through them in sequence.

Resistors in Series

A parallel configuration of resistors, however, allows multiple paths for the charge to travel throughout the circuit.

The resistors in the circuit shown on the right are in a parallel configuration, and the voltage will remain the same across each resistor. The current will change. The equivalent resistance is calculated using the following formula:

$$
\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\cdots+\frac{1}{\mathrm{R}_{\mathrm{n}}}
$$

Resistors in Parallel

Simplifying Circuits

In reality, most circuits are not in a basic series or parallel configuration, but rather consist of a complex combination of series and parallel resistances. The key to simplifying circuits is to combine complex arrangements of resistors into one main resistor. The general rules for solving these types of problems are as follows:

1. Start simplifying the circuit as far away from the voltage source as possible.
a. Analyze the circuit to find a section in which all resistors are either series or parallel.
2. Reduce series and parallel configurations into equivalent resistances $\left(R_{E}\right)$.
a. Moving closer to the voltage source, continue combining resistors until one, total resistance $\left(\mathrm{R}_{\mathrm{T}}\right)$ remains.
3. Reconstruct the circuit step-by-step while analyzing individual resistors.
a. Find Voltage (V) and Current (I).

A useful strategy when analyzing circuits is to keep track of all the calculated properties within a circuit with a chart that contains the values for the resistances, currents, and voltages for each resistor within the circuit. The chart will be set up as follows:

Component	Resistance (Ω)	Current (mA)	Voltage (V)
R_{1}			
R_{2}			
R_{3}			
R_{4}			
R_{5}			

Example

Find the current and voltage across each resistor of the following circuit, if $\Delta \mathrm{V}=18 \mathrm{~V}$.
At first glance, this circuit falls under neither of the two configurations discussed earlier-series nor parallel-rather it contains a combination of the two. In order to find the current and voltage across each resistor, simplify the circuit to a basic state (containing only a single resistor). Then, reconstruct it step-by-step. Following the aforementioned rules, the first step is to analyze the circuit. To do this, find a section where all resistors are in either series or parallel and that is furthest from the voltage source.

Step 1 - Where to Start

By looking at the circuit shown below, resistors R_{3} and R_{4} are the best fit for the previously stated rule regarding where to begin analyzing. Since these two resistors are in a series configuration, combine them as follows and calculate their equivalent resistance using the series equation. Recall the equation for resistance in a series configuration from earlier:

GERMANNA

ACADEMIC CENTER
FOR EXCELLENCE

When simplifying into equivalent resistances, it is necessary to add a new row in the chart for each R_{E} created within the circuit. For example, since $R_{E 1}$ was just calculated, there should be a new row added to the bottom of the chart as follows:

Component	Resistance (Ω)	Current (mA)	Voltage (V)
R_{1}	25		
R_{2}	60		
R_{3}	5		
R_{4}	15		
R_{5}	20		
$R_{\mathrm{E} 1}$	20		

Step 2a-Simplify

Recall the equation for resistance in a parallel configuration from earlier:

$$
\begin{gathered}
\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\cdots+\frac{1}{\mathrm{R}_{\mathrm{n}}} \\
\frac{\mathbf{1}}{\mathrm{R}_{\mathrm{E} 2}}=\frac{\mathbf{1}}{\mathbf{6 0}}+\frac{\mathbf{1}}{\mathbf{2 0}}=\frac{\mathbf{1}}{\mathbf{1 5}}
\end{gathered}
$$

By simplifying the resistors in series, R_{3} and R_{4} become one equivalent resistance, labeled $R_{E 1}$ with a value of 20 Ohms. Now, repeat the process, but this time using resistors R_{2} and the newly created $\mathrm{R}_{\mathrm{E} 1}$.

Step 2b - Continue Simplifying Remaining Resistors

This time the equation for a parallel configuration must be used to find R_{2} and $R_{E 1}$'s equivalent resistance since they are in a parallel configuration.

Step 2c

Step 2d

Provided by

ACADEMIC CENTER
FOR EXCELLENCE

Because there is only one resistor in the circuit, the voltage flowing though the resistor must be equivalent to the amount coming through the voltage source (18V). With the resistance and voltage known, there is only one unknown value in The Ohm's Law equation (V = I*R), so the current (I) may now be calculated:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}: \quad \mathrm{R}=60 \Omega \\
& \mathrm{~V}=18.0 \mathrm{~V} \\
& \mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{18}{60}=.3 \mathrm{~A}=300 \mathrm{~mA}
\end{aligned}
$$

> Current is often calculated to be a decimal when solving circuits, so it is common practice to write the value in terms of milliamps (mA).

Now voltage (V), current (I), and resistance (R) are known for R_{T} (or $R_{E 3}$), and the circuit can be rebuilt. The Ohm's Law equation will be used during this process to evaluate the other components within the circuit. At this point, the chart should have all resistance values filled in along with the voltage and current for R_{T} as follows:

Component	Resistance (Ω)	Current (mA)	Voltage (V)
R_{1}	25		
R_{2}	60		
R_{3}	5		
R_{4}	15		
R_{5}	20		
$R_{\text {E1 }}$	20		18.0
$R_{E 2}$	15	300	
$R_{\text {E3 }}=R_{T}$	60		

Step 3 - Reconstruct \& Solve

To solve for the current and voltage across all of the resistors, undo the most recent change made when simplifying the circuit, in this case steps 2 b and 2 c . In the process of undoing a step, first determine whether the resistors are in parallel or series configuration. This will determine which value from the simplified resistor will remain constant and carry over, in this case, $\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}$ $+R_{\mathrm{E} 2}+R_{5}$. Because these three resistors are in a series setup, their current equals the current flowing through R_{T}, which is 300 mA . Using $\mathrm{V}=\mathrm{I} * \mathrm{R}$, the voltage for each resistor can be solved using their current $(300 \mathrm{~mA})$ and their resistance given at the beginning of the problem.

$\mathrm{R}_{1}:$	$\mathrm{R}=25 \Omega$	$\mathrm{R}_{\mathrm{E} 2}:$	$\mathrm{R}=15 \Omega$	$\mathrm{R}_{5}:$	$\mathrm{R}=20 \Omega$
	$\mathrm{I}=.3 \mathrm{~A}=300 \mathrm{~mA}$		$\mathrm{I}=.3 \mathrm{~A}=300 \mathrm{~mA}$		$\mathrm{I}=.3 \mathrm{~A}=300 \mathrm{~mA}$
	$\mathrm{~V}=(.3)^{*}(25)=7.5 \mathrm{~V}$		$\mathrm{~V}=(.3)^{*}(15)=4.5 \mathrm{~V}$		$\mathrm{~V}=(.3)^{*}(20)=6 \mathrm{~V}$

Step 4a

Continue to rebuild the circuit until each resistor's voltage
$R_{2}: \quad R=60 \Omega$ and current has been found. $\mathrm{R}_{\mathrm{E} 2}$ was comprised of two resistors in parallel configurations, R_{2} and R_{1}. As stated earlier, for parallel configurations the voltage remains constant across all the resistors. Therefore, R_{2} and $\mathrm{R}_{\mathrm{E} 1}$ will have the same voltage across them as $\mathrm{R}_{\mathrm{E} 2}$. Now, use $\mathrm{V}=$

	$I=\frac{4.5}{60}=.075 \mathrm{~A}=75 \mathrm{~mA}$
	$\mathrm{~V}=4.5 \mathrm{~V}$
$\mathrm{R}_{\mathrm{E} 1}: \quad \mathrm{R}=20 \Omega$	

$$
\mathrm{I}=\frac{4.5}{20}=.225 \mathrm{~A}=225 \mathrm{~mA}
$$

$$
V=4.5 \mathrm{~V}
$$

Step 4b

Next, R_{3} and R_{4} were combined in series configuration to create $R_{E 1}$ in Step 1.

Follow Step 4a to find the voltage running across each resistor.
$\mathrm{R}_{3}: \quad \mathrm{R}=5 \Omega$

| $\mathrm{I}=.225 \mathrm{~A}=225 \mathrm{~mA}$ |
| ---: | :--- |
| $\mathrm{~V}=(5)^{*}(.225)=1.125 \mathrm{~V}$ |
| $\mathrm{R}_{4}: \quad \mathrm{R}=15 \Omega$ |

$$
\begin{aligned}
& \mathrm{I}=.225 \mathrm{~A}=225 \mathrm{~mA} \\
& \mathrm{~V}=(15)^{*}(.225)=3.375 \mathrm{~V}
\end{aligned}
$$

Component	Resistance (Ω)	Current (mA)	Voltage (V)
R_{1}	25	300	7.5
R_{2}	60	75	4.5
R_{3}	5	225	1.125
R_{4}	15	225	3.375
R_{5}	20	300	6
$\mathrm{R}_{\mathrm{E} 1}$	20	225	4.5
$\mathrm{R}_{\mathrm{E} 2}$	15	300	4.5
$\mathrm{R}_{\mathrm{E} 3}=\mathrm{R}_{\mathrm{T}}$	60	300	18.0

As the completed chart above shows, the voltage, current, and resistance of each resistor within the system are now known. Using this method of simplifying circuits is helpful in determining the properties of individual resistors within a complex circuit. For more practice with this method, see the following pages containing example problems.

Practice Problems: Simplifying Circuits

Problem 1:

Find the voltage and current (in mA) across resistors 1-5 as well as the total resistance.

Problem 2:

Find the voltage and current (in mA) across resistors 1-5 as well as the total resistance.

Solutions:

1)

Component	Resistance (Ω)	Current (mA)	Voltage (V)
R_{1}	90	200	18
R_{2}	45	300	13.5
R_{3}	15	300	4.5
R_{4}	25	600	15
R_{5}	5	600	3
$\mathrm{R}_{\boldsymbol{T}}$	16.36	1100	18

2)

Component	Resistance (Ω)	Current (mA)	Voltage (V)
R_{1}	97	202.4	19.63
R_{2}	27	101.1	2.73
R_{3}	54	50.6	2.73
R_{4}	31	50.6	1.57
R_{5}	23	50.6	1.16
R_{6}	13	202.4	2.63
$\mathrm{R}_{\text {T }}$	123.5	202.4	25

Equivalent Resistances have been omitted due to the existence of multiple possible answers

