Divisibility Rules

	Rule	Example
Divisibility by 0	No numbers are divisible by 0 .	None
Divisibility by 1	All numbers are divisible by 1 .	All Numbers
Divisibility by 2	Even numbers are divisible by 2.	109850 is divisible by 2 because it is an even number.
Divisibility by 3	Add the digits of a number together. If the sum is divisible by 3 , then the original number is divisible by 3 .	The number 792 is divisible by 3 because $7+9+2=18$, and 18 is divisible by 3 .
Divisibility by 4	If the last two digits of a number are divisible by 4 , then the original number is divisible by 4.	The number 16248 is divisible by 4 because the last two digits, 48 , are divisible by 4 .
Divisibility by 5	If a number ends in 0 or 5 , then the number is divisible by 5 .	The number $563,021,689,540$ is divisible by 5 because it ends in 0 .
Divisibility by 6	If a number is divisible by 2 and 3 , then it is also divisible by 6 .	The number 6874 is not divisible by 6 , even though 6874 is even, indicating divisibility by 2 , but $6+8+7+4=25$, and 25 is not divisible by 3 .
Divisibility by 7	Double the last digit and then subtract it from the number formed by the remaining digits. If the result is divisible by 7 or equal to 0 , then the original number is divisible by 7 . This can be repeated if necessary.	The number 3416 is divisible by 7 because: Double the last digit Subtract from remaining digits $6 \times 2=12$ $341-12=329$ Repeat if necessary with the result. In this case 329 $9 \times 2=18$ $32-18=14, \text { and }$ 14 is divisible by 7 .

	Rule	Example
Divisibility by $\mathbf{8}$	If the last three digits of a number are divisible by 8, then the original number is divisible by 8.	The number 5128 is divisible by 8 because $128 \div 8=16$, and 16 is divisible by 8.
Divisibility by $\mathbf{9}$	Add the digits of a number together. If the sum is divisible by 9, then the original number is divisible by 9.	The number 65762 is n not divisible by 9 because $6+5+7+6+2=26$, and 26 is not divisible by 9.
Divisibility by $\mathbf{1 0}$	If the number ends in 0, then it is divisible by 10.	The number 29581940 is divisible by 10 because the last digit is a 0.
Divisibility by $\mathbf{1 1}$	Alternately add and subtract the digits of the number. If the result is divisible by 11 or equal to 0 then the original number is divisible by 11.	The number 3564 is divisible by 11 because $3-5+6-4=0$.
Divisibility by $\mathbf{1 2}$	If a number is divisible by 3 and 4, then it is also divisible by 12.	The number 409536 is divisible by 12 because $4+0+9+5+3+6=27$ which shows divisibility by 3, and the last two digits, 36, indicate divisibility 4.

Source: Weisstein, Eric W. "Divisibility Tests." From MatbW orld--A Wolfram Web Resource.
http://mathworld.wolfram.com/DivisibilityTests.html

